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Abstract

The present study numerically investigates two-dimensional laminar fluid flow and heat transfer past a circular cylinder near a moving
wall. For the purpose of a careful analysis of the modification of flow and thermal fields around a cylinder by a moving wall, numerical
simulations to calculate the fluid flow and heat transfer past a circular cylinder are performed for different Reynolds numbers of 100, 140
and 180 and a fixed Prandtl numbers of 0.7 (air) in the range of 0:1 6 G=D 6 4, where G/D is the ratio of the gap between the cylinder
and a moving wall, G and the cylinder diameter, D. The present study reports the detailed information of flow and thermal quantities on
the cylinder surface at different gap ratios. As the gap ratio decreases, the vortex shedding formed in the wake is suppressed and the
oscillating amplitude of lift coefficient decreases. Thus the drag, lift coefficients and Nusselt number representing the fluid flow and heat
transfer characteristics also vary as a function of the gap ratio with the dependence of Reynolds number.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

This study aims at a careful analysis of the modification
of flow and thermal fields around a cylinder by the moving
wall placed below the bottom of a cylinder. An example of
such a flow is the flow past a vehicle and a submarine mov-
ing near a wall.

In the unbounded condition, the phenomenon of flow
separation, bluff body wake and prediction of heat transfer
from a cylinder have been intensely studied for a long time
because of their fundamental significance in flow physics
and their practical importance in aerodynamic and heat
transfer applications [1–12]. The generation and evolution
of vortical structures in the wake region have a big effect
on the drag, heat transfer, flow-induced vibration and noise
problems.

The flow around a cylinder near to a stationary plane
wall can be considered as the similarly relevant problem
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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to the present topic. As well known, the effect of a station-
ary plane wall on the flow around a cylinder is mainly
classified into following three factors [13]. First, the no-
penetration condition on a stationary wall prevents the
expansion of the flow and produces the repulsive force from
a stationary wall. Second, the non-uniform profile of free-
stream velocity is induced by a stationary wall and as a
result a velocity shear gives an asymmetric influence on
the cylinder. Third, the no-slip conditions on the wall dis-
tort the flow in the wake behind the cylinder and separate
the boundary layer from a stationary plane wall. Thus,
the combination of the vorticity shed from the cylinder
and from the stationary plane wall forms a more complex
wake structure and changes the flow stability conditions.

Most of the experiments for the flow around a cylinder
over a plane wall were performed at Reynolds numbers in
the subcritical regime ð300 6 Re 6 1:4� 105Þ where the
boundary layer along the cylinder surface is still laminar
[14–23]. Lei et al. [22] and Price et al. [23] summarized well
the experimental investigations into this problem. These
studies have aimed at revealing the dependence of forces
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Nomenclature

c space-averaged streamwise exit velocity
CD drag coefficient
CL lift coefficient
D cylinder diameter
f momentum forcing
G gap between the cylinder and a moving wall
h heat source/sink
n normal direction to the wall
q mass source/sink
Nu local Nusselt number
hNui surface-averaged Nusselt number
hNui time- and surface-averaged Nusselt number
p pressure
Pr Prandtl number
St Strouhal number
t time
tp period of time integration
T temperature
Ts cylinder surface temperature

T1 free-stream temperature
u; v velocity components in x and y directions
U1 free-stream velocity
W cylinder surface
x; y Cartesian coordinates

Greek symbols

a thermal diffusivity
b thermal expansion coefficient
q density
r electric conductivity
m kinematic viscosity
xw wall vorticity

Sub/superscripts

max maximum
min minimum
rms root mean square
– time-averaged quantity
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acting on the cylinder and vortex shedding frequency on
the ratio G/D of the gap between the cylinder and the plane
wall, G, and the cylinder diameter, D. They have also been
concerned with understanding the effect on these quantities
of the boundary layer thickness and the velocity gradient.
Price et al. [23] briefly tabulated the drag coefficient, CD,
Strouhal number, St, and critical G/D to suppress vortex
shedding according to previous experiments in company
with the experimental conditions such as Reynolds num-
ber, G/D, the boundary thickness, and type of measure.
Even in different experiments, the critical G/D to suppress
vortex shedding ranges mainly between 0.2 and 0.4.

In contrast to the experiments, only a small number of
literatures using numerical approach are available. Lei
et al. [24] studied numerically the dependence of the critical
Reynolds number on the gap ratio in the range of
80 6 Re 6 1000. For G=D < 0:2, they showed that flow
has a steady behavior up to Re ¼ 1000. Zovatto and
Pedrizzetti [13] confirmed the small gap ratio of Lei et al.
[24] needed to suppress the vortex shedding by numerically
analyzing flow around a cylinder positioned eccentrically
between two lateral walls at Re < 300.

The purpose of this work is to numerically study the
flow and heat transfer around a circular cylinder over a
wall moving with the same velocity with the free-stream
velocity. Thus, the effect of boundary layer thickness and
the free-stream velocity profiles can be neglected. The pres-
ent study limits the values of Reynolds number to below
the critical value of about 194 [6] which causes the transi-
tion from two-dimensional to three-dimensional flow.
Based on the authors’ survey of literature considering the
similar flow conditions in terms of Reynolds number and
no boundary layer effect with those of present study, only
one experiment by Taneda [25] has been found. Taneda
[25] presented flow visualization at Re ¼ 170, when the cyl-
inder was moved in stagnant fluid close to a stationary
wall, thus there were no boundary layer effects. He
observed only a single row of vortices for G=D ¼ 0:1 and
a two-row vortex street for G=D ¼ 0:6. Especially, it is hard
to find that a literature has dealt with heat transfer prob-
lems of this subject.

As an initial stage of the study dealing with flow and
heat transfer around a circular cylinder over a moving wall,
the present study focus on providing the quantitative infor-
mation about the flow and heat transfer variables such as
the drag and lift coefficients, Strouhal number, the wall
vorticity and Nusselt number within the specified gap
ratios for different Reynolds numbers rather than searching
for the accurate critical gap ratio to suppress the vortex
shedding.

2. Computational details

The immersed boundary method is used to simulate flow
and thermal fields over a circular cylinder near a moving
wall. Therefore, the governing equations describing
unsteady incompressible viscous flow and thermal fields
in the present study are the momentum, continuity and
energy equations:
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Fig. 1. (a) Computational domain and coordinate system along with
boundary conditions, and (b) mesh near the cylinder over a moving wall.
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where xi are Cartesian coordinates, ui are the correspond-
ing velocity components, t is the time, p is the pressure,
and T is the temperature. The momentum forcing fi and
mass source/sink q are applied on the body surface or
inside the body to satisfy the no-slip condition and mass
conservation the cell containing the immersed boundary.
In Eq. (3), the heat source/sink h is applied to satisfy
the iso-thermal boundary condition on the immersed
boundary.

All the variables are non-dimensionalized by the cylin-
der diameter D, free-stream velocity U1 and cylinder sur-
face temperature Ts. The above non-dimensionalization
results in two dimensionless parameters: Re ¼ U1D=m
and Pr ¼ m=a where m and a are the kinematic viscosity
and thermal diffusivity. In the simulations to be reported
here the Prandtl number, Pr, has been taken to be 0.7 cor-
responding to air. The Reynolds numbers of Re ¼ 100, 140
and 180 are considered.

A two-step time-split scheme is used to advance the flow
field. This scheme is based on the previous works of Kim
and Moin [26] and Zang et al. [27]. First the velocity is
advanced from time level ‘n’ to an intermediate level ‘�’
by solving the advection–diffusion equation without the
pressure term. In the advection–diffusion step, the non-
linear terms are treated explicitly using third-order
Adams–Bashforth scheme. The diffusion terms are treated
implicitly using Crank–Nicolson scheme. Then the Poisson
equation for pressure, which is derived by using mass con-
servation, is solved fully implicitly. Once the pressure is
obtained, the final divergence-free velocity field at ‘n + 1’
is obtained with a pressure-correction step. The tempera-
ture field is advanced in a similar manner with third-order
Adams–Bashforth scheme for the advection term and
Crank–Nicolson scheme for the diffusion term.

The central difference scheme with the second-order
accuracy based on the finite volume method is used for
the spatial discretization. Additionally, a second-order lin-
ear or bilinear interpolation scheme is applied to satisfy the
no-slip and iso-thermal conditions on the immersed bound-
ary. Further details of the immersed-boundary method are
given in Kim et al. [28] and Kim and Choi [29].

Fig. 1 shows the computational domain, coordinates
system and grid distribution near the cylinder over a mov-
ing wall. The size of computational domain is �50 6
x 6 50 and 0 6 y 6 50 for the streamwise and transverse
directions, respectively. The gap ratio G/D has changed
in eight cases having the values 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2
and 4. Therefore, for the three Reynolds numbers studied,
24 cases in total are considered.

At the inflow, moving wall and far-field boundaries, the
Dirichlet boundary conditions, u ¼ 1, v ¼ 0 and T ¼ 0, are
enforced. On the surface of the cylinder or immersed
boundary, no-slip and no-penetration boundary condi-
tions, u ¼ 0 and v ¼ 0, are imposed for the velocity field,
while isothermal boundary condition, T ¼ 1, is enforced
for the temperature. The convective boundary conditions,
oui=ot þ coui=ox ¼ 0 and oT=ot þ coT=ox ¼ 0, are applied
at the outflow boundary, where c is the space-averaged
streamwise exit velocity, u and v are the velocity compo-
nents in x and y directions, respectively.

The number of total grid points used is 449ðxÞ � 253ðyÞ.
The grids are non-uniformly distributed near the cylinder,
especially in the gap and the wake region to accurately cap-
ture the separating shear layers around the cylinder and
over the moving wall and in order to account for the high
gradients near the walls. Sixty grid points in each direction
are uniformly distributed within the cylinder while a hyper-
bolic tangent distribution is in the outer regions. In order
to consider the variation of the gap ratio, the number of
grid points used in the y-direction is tuned to maintain
the dense resolution near the cylinder, moving wall and
in the gap spacing. The grid refinement test is carried out
for the smallest gap ratio of 0.1 and also largest gap ratio
of 4 at Re ¼ 100 and 180. Grid independence of the solu-
tion has been confirmed with additional simulations on
the finer grids ð513ðxÞ � 301ðyÞÞ changing the body forces
and Nusselt number by less than 1%. The condition of
CFL < 0:3 is chosen to determine the non-dimensional
time step used in the present calculations. The computa-
tions were advanced in time until it was observed that the
drag, lift and heat transfer coefficients have reached a sta-
tistically stationary state. Especially, for the small gap
ratios, the effect of calculation time on the fully developed
state has been examined using the different initial



Fig. 2. Comparisons of the present study and references for the cases of an unbounded circular cylinder. (a) Strouhal number, (b) drag coefficient, (c) lift
coefficient and (d) Nusselt number.
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conditions. Although the simulations for the small gap
ratios start with the different initial conditions, the fully
developed steady or periodic flows are reached after about
50 time units. Every computation is extended to t P 500 to
minimize the effect of calculation time on the final flow
state.

Once the velocity and temperature fields are obtained,
the local, surface-averaged, time-averaged, and time-and-
surface-averaged Nusselt number are defined as

Nu ¼ oh
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where n is the normal direction to the walls, W is the cylin-
der surface and tp is the period of time integration.

The validation of present numerical method has been
performed by the comparisons with previous results of
experiments and computations for the unbounded circular
cylinder as shown in Fig. 2a–d. The present Strouhal num-
bers at different Reynolds numbers agree well with those of
previous experiment [5] and computation [30]. Drag and
lift coefficients at corresponding Reynolds number are in
good agreement with drag coefficient of Henderson [31]
and Weiselsberger [32], and lift coefficient of Park et al.
[33]. Also, present Nusselt numbers at different Reynolds
numbers well match the numerical results of Cheng and
Hong [34].
3. Results and discussion

3.1. Fluid flow

The instantaneous vorticity contours for different gap
ratios of G=D ¼ 4, 2, 1, 0.5, 0.4, 0.3, 0.2 and 0.1 at
Re ¼ 100 are shown in Fig. 3a–h, respectively. At the larg-
est gap ratio of G=D ¼ 4, the flow around the cylinder is in
effect indistinguishable from that around an unbounded
circular cylinder. The well-defined two-row street of vorti-
ces is formed with clockwise negative vortices shed from
the upper side of cylinder and counter-clockwise positive
ones shed from the opposite side of cylinder. However, it
can be expected through the existence of wall vorticity over
a moving wall that flow is undergone very weak effect of
the gap flow. When G=D ¼ 2:0, the wake behind a cylinder
is still characterized as the two-row vortex street over the
entire downstream region. This wake gives an effect on gen-



Fig. 3. Instantaneous vorticity contours for the different G/Ds of (a) 4, (b) 2, (c) 1, (d) 0.5, (e) 0.4, (f) 0.3, (g) 0.2 and (h) 0.1 at Re ¼ 100 (contour values
range from �3 to 3 with 16 levels).
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erating wall shear layers, with alternative sign depending
on vortex shed from the cylinder, over the moving wall.

Further decreasing the gap size, the positive vorticity
shed from the wall side of the cylinder much strongly inter-
acts with the boundary layer negative vorticity of the mov-
ing wall while the actual wake is dominated by the vorticity
shed from opposite side of the cylinder. The vorticity shed
from the wall side of the cylinder is stretched during the
pairing with the opposite sign vorticity developed from
the moving wall, which delays the roll up into a well-
defined vortex and reduces the circulation of the eventual
wake vortex because of the dissipative nature of the stretch-
ing process. Thus, with decrease in the gap, the region
showing two-row vortex structure is gradually diminished
from far downstream of cylinder. When the gap size
reaches to G=D ¼ 0:5, two-row vortex structure is eventu-
ally transformed into one-row structure as shown in
Fig. 3d. This one-row structure associated with the shear-
layer shed from the upper side of the cylinder is kept until
to G=D ¼ 0:3. At G=D ¼ 0:2, vortex shedding in the wake
region does not appear anymore. The wake vorticity on
the upper side of the cylinder elongates farther down-
stream. When the wake is long enough it begins to fluctuate
at the downstream tail. At the smallest gap ratio of
G=D ¼ 0:1, the flow is stabilized and the steady state with
an asymmetric shape of vorticity along the cylinder center-
line. The length of wake vorticity on the wall side is shorter
than that of wake vorticity on the opposite side of the cyl-
inder. The magnitude of streamwise velocity in the gap
between the cylinder and moving wall is restricted to that
of the moving wall velocity, and the vertical motion of flow
in the region of gap is strongly inhibited by a moving wall.
Thus, the gap flow between the cylinder and a moving wall
is much weaker than flow over the upper side of cylinder.

With increasing Re, the wake vorticities on both sides
of cylinder become shorter in length and stronger in
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concentration in all the ranges of gap ratio, which can be
identified by comparing the instantaneous vorticity con-
tours for Re ¼ 100, 140 and 180 in Figs. 3 and 4, respec-
tively. Because the shear-layer developed from the wall
and the shear-layer shed from the lower side of the cylinder
couple and roll up, the flow at Re ¼ 140 and 180 still shows
a single row of vortices with a strong unsteadiness at
G=D ¼ 0:2 and 0.1, in contrast to that at Re ¼ 100. This
single vortex row was observed also in the flow visualiza-
tion by the experiment of Taneda [25].

Fig. 5 shows the Strouhal number variation as a func-
tion of gap ratio at three different Reynolds numbers of
100, 140 and 180. The absolute Strouhal numbers and nor-
malized Strouhal numbers in terms of the Strouhal number
St0 obtained at G=D ¼ 4 are plotted in Fig. 5a and b,
respectively, which shows the dependence of the Strouhal
number on the gap ratio and Reynolds number. In the
range of gap ratio considered in this study, the dependence
Fig. 4. Instantaneous vorticity contours for the different G/Ds of 4, 0.5, 0.2 an
to 3 with 16 levels).
of St on Reynolds number is analogous to that of
unbounded cylinder. The Strouhal number variation along
the gap ratio for three Reynolds numbers is almost the
same pattern as follows. The value of Strouhal number
increases with decreasing G/D up to 0.5 since the gap flow
accelerates. As G/D continuously decreases, the value of
Strouhal number decreases rapidly because the gap flow
is stabilized by the wall effect.

For three different Reynolds numbers, the Strouhal num-
ber does not change significantly when G/D is larger than 2.
The maximum variation of the Strouhal number in this gap
range is less than 3% as shown in Fig. 5b. At G=D ¼ 0:5, the
Strouhal number has a maximum value with about a 12%
augmentation relative to the largest gap ratio regardless
of the Reynolds number variation. As the cylinder is moved
further toward the moving wall below G=D < 0:5, the
Strouhal number quickly decreases. As shown in Fig. 5b,
decreasing ratio of the Strouhal number becomes large as
d 0.1 at Re ¼ 140 (a–d) and Re ¼ 180 (e–h) (contour values range from �3



Fig. 5. Strouhal number as a function of gap ratio at three different
Reynolds numbers of 100, 140 and 180; (a) absolute Strouhal numbers, (b)
normalized Strouhal numbers in terms of the Strouhal number St0

obtained at G=D ¼ 4.

Fig. 6. (a) Time-averaged and (b) root-mean-square (RMS) values of lift
coefficient as a function of gap ratio (G/D) for three different Reynolds
numbers of 100, 140 and 180.
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Reynolds number decreases. At the lowest G=D ¼ 0:1
among the gap ratios considered in this study, the Strouhal
number changes with less than 3% deviation from St0 for
both Re ¼ 140 and 180. However, for Re ¼ 100, the Strou-
hal number does not appear since flow is stabilized by the
suppression of vortex shedding as shown in Fig. 3h. As a
result the Strouhal number decreases rapidly with deceasing
G/D, which is another evidence to prove that the flow is sta-
bilized as the G/D decreases.

The time-averaged and root-mean-square (RMS) values
of lift coefficient as a function of gap ratio for three differ-
ent Reynolds numbers are plotted in Fig. 6a and b, respec-
tively. It can be certified from Fig. 6a that a similar pattern
of CL variation according to the gap ratio happens at all
the Reynolds numbers considered in this study.

At the largest gap ratio of 4.0, since the periodic vortex
shedding from the top and bottom parts of the cylinder
resembles the isolated cylinder case, the time-averaged lift
coefficient ðCLÞ reaches to almost zero value, meaning that
instantaneous CL regularly oscillating with nearly same
positive maximum and negative minimum values based
on zero. The front stagnation point moves toward the wall
side of the cylinder with decreasing G/D, which can be clar-
ified by the careful observation of the instantaneous vortic-
ity contours plotted in Figs. 3 and 4 and the time-averaged
wall vorticity along the cylinder surface shown later in
Fig. 7. Consequently, as decreasing the gap ratio, the pres-
sure under the bottom part of cylinder becomes much
higher than that over the top part of cylinder and as a
result CL increases into the positive value. Even not shown
in here, it can be observed from the time history of instan-
taneous CL that the center of instantaneous CL oscillating
along the time gradually deviates from zero to positive
value as decreasing G/D. When the cylinder is moved to
the certain gap ratio depending on Reynolds number, the
instantaneous CL oscillates with only positive value. How-
ever, the magnitude of CL decreases with increasing the
Reynolds number, when a cylinder is moved further
toward the wall. It can be supported from Fig. 6a that
the dependence of CL on Reynolds number is stronger as
reducing the gap ratio.



Fig. 7. Time-averaged wall vorticity as a function of circumferential
direction h at different gap ratios for (a) Re ¼ 100, (b) 140 and (c) 180.
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In the range of gap ratios between 0.1 and 4.0 consid-
ered in this study, RMS lift coefficient increases with the
gap ratio, since the strength of vortex shedding increases
with the gap ratio, and the wall effect on the vortex shed-
ding becomes weaker and weaker. Especially, in the large
gap ratios with constant RMS lift coefficient, the vortex
shedding induced by flow separating from the top and bot-
tom parts of the cylinder shows periodic pattern, because
the wall effect is not significant.

As well known, the higher the Reynolds number, the
stronger the vortex shedding. It means that the fluctuation
of the lift is stronger at high Reynolds numbers. The turn-
ing gap ratio for the onset or suppression of the vortex
shedding also depends on the Reynolds number. This gap
ratio is higher in low Reynolds number flows, which can
be identified by comparing the vorticity contours for differ-
ent Reynolds numbers in Figs. 3 and 4. For Re ¼ 100, there
is no value of RMS lift at G=D ¼ 0:1, because the oscilla-
tion of instantaneous CL along the time disappears due
to the regular vortex shedding completely suppressed as
early shown in Fig. 3h.

Fig. 7 shows the time-averaged wall vorticity ðxwÞ as a
function of circumferential direction h for different gap
ratios at three different Reynolds numbers. Here, overbar
ð Þ denotes the time-averaged quantity, and h ¼ 0� and
180� represent the rear and front stagnation points of the
unbounded cylinder as shown in Fig. 1.

The dependence of xw on gap ratio is about the same for
three Reynolds numbers. Namely, since the front stagna-
tion point moves toward the wall side of the cylinder with
decreasing G/D, flow consumes more kinetic energy to turn
over from the front stagnation point located at the wall
side of the cylinder to top part of cylinder and to overcome
the increased viscous regime. Thus, when the cylinder
approaches to the wall, the time-averaged wall vorticity
around the top part of cylinder decreases and the circum-
ferential location, h�xw;max , at which the wall vorticity xw

has a maximum value, is closer to the front stagnation
point ðh ¼ 180�Þ of unbounded cylinder flow.

Over the wall side of cylinder, as G/D decreases, the
front stagnation point moves toward the bottom part of
the cylinder, and consequently h�xw;max moves to the down-
stream direction. However, the change of h�xw;max is limited
to h ¼ 270� where the distance between the cylinder and
the wall is minimum. Thus, the maximum value of xw for
the smaller gap ratios of G=D 6 0:2 is obtained at about
h ¼ 270� as shown in Fig. 7a–c for three different Reynolds
numbers. It can be expected at the smallest G/D of 0.1 that
the magnitude of maximum value of xw is dominated by
the kinematic condition of the wall. Therefore, the magni-
tude of maximum value of xw can be given by
j �xw;max � Uwall=ðG=DÞ j where Uwall is the wall velocity.

The acceleration of upstream flow near the bottom part
of cylinder is restricted due to increasing flow resistance to
the cross flow by the existence of the wall, which results in
the decrease of xw between the front stagnation point
depending on G/D and h � 260� with decreasing G/D. In
the circumferential range from h � 260� to the rear stagna-
tion point depending on G/D, the magnitude of xw

increases with decreasing G/D as shown in Fig. 7a–c for
three different Reynolds numbers.

The time-averaged drag coefficient as a function of the
gap ratio for different Reynolds numbers of 100, 140 and
180 is shown in Fig. 8. CD decreases for all gap ratios with



Fig. 8. Time-averaged drag coefficient as a function of gap ratio (G/D) for
three different Reynolds numbers of 100, 140 and 180.

Fig. 9. Instantaneous temperature contours for the different G/Ds of 4, 0.5, 0.2
0.09 to 1 with 19 levels).
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increasing Reynolds number. For Re ¼ 140 and 180, the
behavior of CD has the same decaying pattern with increas-
ing the gap ratio.

However, for Re ¼ 100, the value of CD undergoes a sig-
nificant change in the gap ratios ranging from 0.1 to 0.3. In
this range of the gap ratio, the flow transfers from the
steady state to the unsteady state. At G=D ¼ 0:1 corre-
sponding to the steady flow, since the cylinder is almost
submerged by the viscous boundary layers formed in
between the bottom part of the cylinder and the moving
wall as shown in Fig. 3h, the strong resistance occurs on
the flow passing through the gap. Thus, CD has a higher
value at this gap ratio as shown in Fig. 8. However, at
G=D ¼ 0:2, the flow is going through the transition from
the steadiness to very weak unsteadiness as shown in
Fig. 3g. At this gap ratio, CD is suddenly decreased because
the increasing gap ratio reduces the flow resistance with
and 0.1 at Re ¼ 100 (a–d) and Re ¼ 180 (e–h) (contour values range from
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diminishing the viscous gap and the vortex shedding is not
appeared in the upper side of the cylinder. When the cylin-
der is located at G=D ¼ 0:3, CD increases again because the
augmentation of CD resulting from the appearance of vor-
tex shedding in the upper side of the cylinder exceeds the
drop of CD due to the resistance reduction of flow passing
through the gap with increasing the gap ratio. After
G=D > 0:3, CD gradually deceases with increasing the gap
ratio.
Fig. 10. Surface-averaged Nusselt number hNui as a function of the time
at different gap ratios for three different Reynolds numbers of (a) 100, (b)
140 and (c) 180.
3.2. Heat transfer

Fig. 9 shows the instantaneous temperature contours for
the different gap ratios at Re ¼ 100 and 180, respectively,
which correspond to the instantaneous vorticity contours
as shown in Figs. 3 and 4.

The change of thermal filed for various gap ratios and
three different Reynolds numbers considered in this study
can be explained by that of flow, because the thermal field
as the passive scalar is governed by the flow. When
G=D ¼ 4, the isothermal lines are about the same as those
of the unbounded cylinder for corresponding Reynolds
number, which show the distribution of temperature con-
centration in response to well-defined two-row street of
vortices.

When the cylinder is moved further toward the wall, the
temperature contours below the wall side of the cylinder
become much elongated and denser than those over the
top part of the cylinder, because the vorticity separating
from the wall side of the cylinder rolls up but is rapidly
stretched by the wall vorticity of opposite sign.

But, in the case of Re ¼ 100, thermal field stabilized
except the downstream tail weak fluctuating at G=D ¼ 0:2
and finally reaches to the steady state at G=D ¼ 0:1 as
shown in Fig. 9c and d, respectively, which follows the flow
field as previously shown in Fig. 3g and h for the instanta-
neous vorticity contours at G=D ¼ 0:2 and 0.1, respectively.

The time histories of surface-averaged Nusselt number
hNui at different gap ratios for three different Reynolds
numbers of 100, 140 and 180 are plotted in Fig. 10. For
all gap values, it can be certified by comparing the time his-
tories of hNui for Re ¼ 100, 140 and 180 in Fig. 10a–c,
respectively, that hNui and its oscillatory amplitude have
the expected augmenting behavior with increasing Rey-
nolds number. For all Reynolds numbers considered in this
study, the variation of hNui shows the distinguished behav-
ior at different ranges of G/D, because the flow and temper-
ature fields have different distribution depending on G/D.

Within the range of 1 6 G=D 6 4, hNuis have almost the
same oscillating amplitude and mean value. But, the sec-
ondary oscillation peak in the time variation of hNui
becomes less and less as G/D decreases in this range, which
is much significant with decreasing Reynolds number. This
phenomenon is linked to the transition from the two-row
vortex structure into one-row structure by which the vortic-
ity in the separated free shear layer on the bottom part of
cylinder becomes weak by interacting with the wall shear
layer.

As G/D decreases at 0:3 6 G=D 6 0:5 where the two-
row vortex structure eventually falls into one-row structure
for all Reynolds numbers, the value of hNui decreases.
However, its oscillation amplitude is larger than that in
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1 6 G=D 6 4, which is clearly shown with increasing the
Reynolds number. In this range of G/D, the oscillation per-
iod of hNui is twice that of hNui in the range of
1 6 G=D 6 4.

When G/D decreases to 0.2, hNui quickly decreases for
all Reynolds numbers. At this gap ratio, the fluctuation
of hNui shows the expected decaying behavior with
decreasing Reynolds number. It has to be mentioned that
the weak dependence of hNui on the time at G=D ¼ 0:2
for Re ¼ 100 looks like the steady state owing to the scale
used to plot the time histories of hNui for all gap ratios.

When G/D decreases from 0.2 to 0.1, hNui increases rap-
idly for all Reynolds numbers. At this gap ratio, it can be
Fig. 11. Time-averaged temperature contours for the different G/Ds of 4, 0.5, 0.
0.1 to 1 with 10 levels).
expected from the Fig. 7 for the time-averaged local wall
vorticity as a function of h that the boundary layer thick-
ness on the bottom part of cylinder facing close to the wall
is significantly affected by the gap. In consequence, when
the distribution of local Nusselt number at G=D ¼ 0:1 is
compared to that at G=D ¼ 4, the increasing rate of local
Nusselt number is larger than the decreasing rate of local
Nusselt number and as a result hNui increases for
Re ¼ 100 and 140. The opposite is also true for Re ¼ 180.

Fig. 11 shows the time-averaged temperature, �h
contours near the cylinder for the different gap ratios
at Re ¼ 100 and 180, respectively. For the gap ratios,
the thickness of thermal boundary layer decreases with
2 and 0.1 at Re ¼ 100 (a–d) and Re ¼ 180 (e–h) (contour values range from



Fig. 12. Time-averaged local Nusselt number, Nu, as a function of
circumferential direction h at different gap ratios for (a) Re ¼ 100, (b) 140
and (c) 180.
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increasing the Reynolds number, which can be observed by
comparing the �h contours of each corresponding gap ratio.
For the Reynolds numbers, when the cylinder is approach-
ing to the wall, the pattern of a change in �h contours is gen-
erally the same as follows.

In the range of 1 6 G=D 6 4, the distribution of �h con-
tours is almost the same as the unbounded cylinder case.
When the cylinder further approaches the wall, wake on
the wall side is weaker than that on the opposite side and
the wall generally produces a repulsive force creating posi-
tive lift from it. Consequently, �h contours temperature con-
tours in the downstream region are inclined upward from
the wall and as a result the distribution of temperature con-
tours is asymmetric with respect to the x-axis crossing the
cylinder center.

Fig. 12 shows the time-averaged local Nusselt number,
Nu, as a function of circumferential direction h at different
gap ratios for three different Reynolds numbers. The distri-
bution of Nu has a deep relation with that of wall vorticity
xw as shown in Fig. 7. On the top part of the cylinder, if the
wall vorticity increases with increasing G/D, the thermal
boundary layer thickness decreases and as a result Nu
increases. The opposite is also true. On this part of the cyl-
inder, irrespective of the gap ratio, the distribution of Nu as
a function of h shows the similar pattern that Nu has a
maximum value at h ¼ 180

�
corresponding to the front

stagnation point of the unbounded cylinder and decrease
as we move from the stagnation to separation point
depending on the gap ratio.

On the bottom part of the cylinder, as expected, the
effect of the gap ratio on Nu is much strongly than that
on the top part of the cylinder. As decreasing the gap ratio,
Nu starts to increase when h is approaching to the nearest
location of h ¼ 270� between the cylinder and the wall.
Especially, at the smallest gap ratio of 0.1, the peak of
Nu is located at h ¼ 270� where the wall vorticity has the
peak as shown in Fig. 7.

Nu increases for the gap ratios with increasing Reynolds
number, because the thickness of forced convective thermal
boundary layer decreases with increasing the Reynolds
number. In the wall side of the cylinder, when the cylinder
is getting much close to the wall and the Reynolds number
is getting smaller, heat transfer will be dominate by the
conduct mode. Thus, the dependence of Nu on the Rey-
nolds number at G=D ¼ 0:1 is very weak in the range of
250� 6 h 6 320� where Nu rapidly increases and decreases.

At the lowest Reynolds number of 100 among the Rey-
nolds numbers considered in this study, the maximum
value of Nu for G=D ¼ 0:1, which is located at h ¼ 270�,
is larger than that of G=D ¼ 4 at the front stagnation point
as shown in Fig. 12a. As the result of this, it seems possible
that the heat transfer in the region close to the wall by the
conduct mode at G=D ¼ 0:1 overcomes that induced by
mainly convective mode at G=D ¼ 4. However, when Re
increases to 140 and 180, the maximum value of Nu at
the front stagnation point for G=D ¼ 4 is larger than that
at h ¼ 270� for G=D ¼ 0:1 as shown in Fig. 12b and c.
Fig. 13 shows the time and surface-averaged Nusselt
number, hNui, as a function of the gap ratio G/D for the
three different Reynolds numbers of 100, 140 and 180.
The absolute Nusselt numbers and normalized Nusselt
numbers in terms of the Nusselt number hNu0i obtained
at G=D ¼ 4 are plotted in Fig. 13a and b, respectively,
which shows the dependence of the Nusselt number on
the gap ratio and the Reynolds number. The behavior of



Fig. 13. Time and surface-averaged Nusselt number, hNui, as a function
of the gap ratio G/D for the three different Reynolds numbers of 100, 140
and 180. (a) Absolute Nusselt numbers, (b) Normalized Nusselt numbers
in terms of the Nusselt number Nu0h i obtained at G=D ¼ 4.
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hNui for the gap ratios and Reynolds numbers can be esti-
mated from the circumferential distribution of time-aver-
aged local Nusselt number, Nu, as shown in Fig. 12. The
value of hNui for all gap ratios shows the decaying behavior
with decreasing Reynolds number.

For each Reynolds number, the variation of hNui
depending on the gap ratio is about the same pattern as fol-
lows. hNui keeps a constant in the range of 1 6 G=D 6 4.
As G/D decreases in the range of 0:3 6 G=D < 1, the value
of hNui alternates a slight reduction and augmentation of
about 2% for that at G=D ¼ 4 as clearly shown in
Fig. 13b. When the cylinder reaches to G=D ¼ 0:2, hNui
decreases rapidly and has a minimum value because the
decreasing rate of local Nusselt number Nu is larger than
the increasing rate of Nu as shown in Fig. 12 for three dif-
ferent Reynolds numbers. At this gap ratio of 0.2, the rate
of hNui to that at G=D ¼ 4 for three different Reynolds
numbers has almost the same value which is about 4.5%
less than that for G=D ¼ 4. As G/D is decreased to 0.1,
hNui increases quickly. However, at this gap ratio, the
dependence of Reynolds number on hNui=hNu0i is much
significant than other gap ratios as shown in Fig. 13b.
For Re ¼ 100 and 140, the values of hNui at G=D ¼ 0:1
are about 7% and 1% larger than those for G=D ¼ 4,
respectively. In contrast, for Re ¼ 180, the value of hNui
at G=D ¼ 0:1 is about 1.5% less than that for G=D ¼ 4.

4. Conclusions

The present study numerically investigates the charac-
teristics of two-dimensional laminar flow and heat transfer
past a circular cylinder near a moving wall. In a second-
order accurate finite volume method, an immersed bound-
ary method for solving the Navier–Stokes and thermal
energy equations is adopted to calculate the flow and heat
transfer over a circular cylinder in the Cartesian coordi-
nates. Comparisons with the published references show
excellent agreement in detecting the drag, the lift, Strouhal
number and Nusselt number of the unbounded cylinder for
different Reynolds numbers considered in this study.

The flow and heat transfer are computed at a various
range of gap ratios, 0:1 6 G=D 6 4, for three different Rey-
nolds numbers of 100, 140 and 180. A moving wall with the
same velocity to the free-stream velocity guarantees the
effect of boundary layer thickness and the free-stream
velocity profiles in the front of a cylinder to be neglected.

For low Reynolds number of 100, at G=D ¼ 0:2, no vor-
tex shedding in the wake region is found. At G=D ¼ 0:1,
the flow reaches the steady state with an asymmetric shape
of vorticity along the cylinder centerline. With increasing
Reynolds number to 140 and 180, flow still shows a single
row of vortices with the strong unsteadiness at G=D ¼ 0:2
and 0.1. Based on this result, it can be concluded that the
gap effect on flow stabilization is stronger at the lower Rey-
nolds number.

As the cylinder is approaching the moving wall, the
Strouhal number corresponding to vortex shedding fre-
quency for all three Reynolds numbers slightly increases
until to reach a maximum at G=D ¼ 0:5 where the transi-
tion form two-row to single-row of vortices seems to be
occurred, and then decreases rapidly. The lift increases with
decreasing gap ratio and Reynolds number. In contrast, the
RMS lift decreases with decreasing the gap ratio and Rey-
nolds number.

With decreasing the gap ratio, the local peak of wall vor-
ticity and Nusselt number along the cylinder surface moves
to the downstream region. For the smaller gap ratios, espe-
cially, the local peak is located at the closest location
between the cylinder bottom and the moving wall.

The value of time and surface-averaged Nusselt number
for all gap ratios shows the decaying behavior with decreas-
ing Reynolds number. For each Reynolds number, the
dependence of time- and surface-averaged Nusselt number
on the gap ratio is about the same pattern. At G=D ¼ 0:2,
the time- and surface-averaged Nusselt number for all three
Reynolds numbers has the minimum value with the slight
reduction of about 2% for the result at G=D ¼ 4. As the
Reynolds number decreases, the time and surface-averaged
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Nusselt number significantly increases at the smallest gap
ratio of 0.1.
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